skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Zexuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phase diagrams offer substantial predictive power for materials synthesis by identifying the stability regions of target phases. However, thermodynamic phase diagrams do not offer explicit information regarding the kinetic competitiveness of undesired by-product phases. Here we propose a quantitative and computable thermodynamic metric to identify synthesis conditions under which the propensity to form kinetically competing by-products is minimized. We hypothesize that thermodynamic competition is minimized when the difference in free energy between a target phase and the minimal energy of all other competing phases is maximized. We validate this hypothesis for aqueous materials synthesis through two empirical approaches: first, by analysing 331 aqueous synthesis recipes text-mined from the literature; and second, by systematic experimental synthesis of LiIn(IO3)4and LiFePO4across a wide range of aqueous electrochemical conditions. Our results show that even for synthesis conditions that are within the stability region of a thermodynamic Pourbaix diagram, phase-pure synthesis occurs only when thermodynamic competition with undesired phases is minimized. 
    more » « less